Conservation and Diversity of Influenza A H1N1 HLA-Restricted T Cell Epitope Candidates for Epitope-Based Vaccines
نویسندگان
چکیده
BACKGROUND The immune-related evolution of influenza viruses is exceedingly complex and current vaccines against influenza must be reformulated for each influenza season because of the high degree of antigenic drift among circulating influenza strains. Delay in vaccine production is a serious problem in responding to a pandemic situation, such as that of the current H1N1 strain. Immune escape is generally attributed to reduced antibody recognition of the viral hemagglutinin and neuraminidase proteins whose rate of mutation is much greater than that of the internal non-structural proteins. As a possible alternative, vaccines directed at T cell epitope domains of internal influenza proteins, that are less susceptible to antigenic variation, have been investigated. METHODOLOGY/PRINCIPAL FINDINGS HLA transgenic mouse strains expressing HLA class I A*0201, A*2402, and B*0702, and class II DRB1*1501, DRB1*0301 and DRB1*0401 were immunized with 196 influenza H1N1 peptides that contained residues of highly conserved proteome sequences of the human H1N1, H3N2, H1N2, H5N1, and avian influenza A strains. Fifty-four (54) peptides that elicited 63 HLA-restricted peptide-specific T cell epitope responses were identified by IFN-gamma ELISpot assay. The 54 peptides were compared to the 2007-2009 human H1N1 sequences for selection of sequences in the design of a new candidate H1N1 vaccine, specifically targeted to highly-conserved HLA-restricted T cell epitopes. CONCLUSIONS/SIGNIFICANCE Seventeen (17) T cell epitopes in PB1, PB2, and M1 were selected as vaccine targets based on sequence conservation over the past 30 years, high functional avidity, non-identity to human peptides, clustered localization, and promiscuity to multiple HLA alleles. These candidate vaccine antigen sequences may be applicable to any avian or human influenza A virus.
منابع مشابه
In silico design a multivalent epitope vaccine against SARS-CoV-2 for Iranian populations
Background: Due to high genetic variation in human leukocyte antigen )HLA( alleles, epitope-based vaccines don’t show equal efficacy in different human populations. therefore, we proposed a multi-epitope vaccine against SARS-CoV-2 for Iranian populations. Materials and Methods: For this purpose, the proteins without allergenicity and high antigenicity as well as conservancy level from SARS-CoV...
متن کاملIdentification of Mycobacterium tuberculosis CTL Epitopes Restricted by HLA-A*0201 in HHD Mice
CD8+ T cells are thought to play an important role in protective immunity to tuberculosis. The major histocompatibility complex class I subtype HLA-A*0201 is one of the most prevalent class I alleles, with a frequency of over 30% in most populations. HLA-A*0201 transgenic, H-2Db/mouse beta2-microglobulin double-knockout mice (HHD) which express human HLA-A*0201 but no mouse class I, was shown t...
متن کاملImmunoinformatics Approach in Designing Epitope-based Vaccine Against Meningitis-inducing Bacteria (Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae Type b)
Meningitis infection is one of the major threats during Hajj season in Mecca. Meningitis vaccines are available, but their uses are limited in some countries due to religious reasons. Furthermore, they only give protection to certain serogroups, not to all types of meningitis-inducing bacteria. Recently, research on epitope-based vaccines has been developed intensively. Such vaccines have poten...
متن کاملB and T-Cell Epitope Prediction of the OMP25 Antigen for Developing Brucella melitensis Vaccines for Sheep
Brucellosis, produced by Brucella species, is a disease that causes severe economic losses for livestock farms worldwide Due to serious economic and medical consequences of this disease, many efforts have been made to prevent the infection through the use of recombinant vaccines based on Brucella outer membrane protein (OMP) antigens. In the present study, a wide range of on-line prediction sof...
متن کاملDesigning of A Multi-epitope Recombinant Protein, Consisting of Several Conserved Epitopes from Hemagglutinin Protein of the H1N1 and H5N1 Strains of Influenza Virus by Immunoinformatics Approaches
Introduction: According to marked advances in bioinformatics studies, development of influenza vaccines has been greatly modified in many studies. In this study, we have designed a multi-epitope recombinant protein, consisting of several conserved epitopes from Hemagglutinin protein of the H1N1 and H5N1 strains of Influenza virus by immunoinformatics approaches. Materials and Methods: The regis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010